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Cylindrically symmetric structures such as concentric rings and rosettes arise out of thin polymeric films
subjected to strong electric fields. Experiments that formed concentric rings and theory capable of explaining
these and other cylindrical structures are presented. These rings represent an additional member of a class of
structures, including pillars and holes, formed by electrohydrodynamic patterning of thin films, occasionally
referred to as lithographically induced self-assembly. Fabrication of a set of concentric rings begins by spin
coating a thin poly(methyl methacrylate) film onto a silicon wafer. A mask is superimposed parallel to the film
leaving a similarly thin air gap. Electric fields, acting in opposition to surface tension, destabilize the free
interface when raised above the glass transition temperature. Central pillars nucleate under small cylindrical
protrusions patterned on the mask. Rings then emerge sequentially, with larger systems having as many as 10
fully formed rings. Ring-to-ring spacings and annular widths, typically on the order of a micron, are approxi-
mately constant within a concentric cluster. The formation rate is proportional to the viscosity and, conse-
quently, has the expected Williams-Landel-Ferry dependence on temperature. In light of these developments
we have undertaken a linear stability analysis in cylindrical coordinates to describe these rings and ringlike
structures. The salient feature of this analysis is the use of perturbations that incorporate their radial depen-
dence in terms of Bessel functions as opposed to the traditional sinusoids of Cartesian coordinates. The theory
predicts approximately constant ring-to-ring spacings, constant annular widths, and growth rates that agree
with experiment. A secondary instability is observed at higher temperatures, which causes the rings to segment
into arcs or pillar arrays. The cylindrical theory may be generalized to describe hexagonal pillar/hole packing,
gratings, and rosettes with the first being of particular importance given the ubiquitous observation of hexago-
nal packing. The perturbation analysis presented here is relevant to any system with cylindrical symmetry, for
which the radial dependence can be described in terms of Bessel functions.
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I. INTRODUCTION

Patterning thin organic films has become an issue of great
technical importance. The semiconductor industry routinely
relies on photolithography of polymer resist films to delin-
eate devices and interconnects; however, the chemicals and
radiation exposures used in photolithography are unsuitable
for many applications and scaling down the feature size re-
quires scaling up the cost. As such, alternative patterning
processes being pursued include nanoimprint lithography[1],
microcontact printing[2], and cold-welding[3]. Patterns that
form spontaneously or in response to electric fields may
eventually provide another class of alternatives. Options cur-
rently being pursued include self-assembly of colloidal par-
ticles [4] and phase separation of block copolymers[5].

In this paper we discuss another approach, which capital-
izes on the growth of instabilities to pattern thin polymer
melts. This electrohydrodynamic patterning method, which
has been termed lithographically induced self-assembly
(LISA), has been shown to produce periodic pillar arrays and
mesas[6–8]. Furthermore, the feature size of the resulting
patterns can be reduced to the submicron scale[8,9].

In a typical experiment[6], a thin polymer film is first
spun onto a flat substrate. A mask, sometimes patterned in
relief, is held in close proximity to the polymer surface, leav-
ing an air gap, and the system is heated above the glass
transition temperature,Tg, of the polymer(Fig. 1). In some
cases an external electric field is applied though this is not
always necessary. An instability then causes perturbations at
the polymer surface to grow with a length scale set by the
competition between electrical forces and surface tension.
After some time the polymer film is observed to assemble
into periodic structures that bridge the gap between the mask
and substrate. By using a patterned mask, the location and
domain orientation of the structures can be well controlled.
Single domain pillar arrays can be formed with appropriate
relief dimensions. After cooling the system below the poly-
mer Tg, the structures become fixed and the mask can be
removed.

Models to predict the spacings agree on the electrohydro-
dynamic nature of the process, but differ regarding the elec-
trical properties of the film. While Chou and Zhuang[6]
initially proposed that image charge generated the electrical
forces, Schäfferet al. [8,10] affirmed electrical forces to be
the main driving force by observing spacings that vary in-
versely with the electric field as predicted by their model.
They assumed the film to be absent of free charge, i.e., a
perfect dielectric, and identified the linearly unstable modes
within the context of the lubrication approximation as set by
the competition between the electrical forces and the surface
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tension. They justified the linear stability analysis by demon-
strating that the spacings agree with the fastest growing wave
numbers predicted. Linet al. [11] adapted their model to
account for a dielectric medium in the gap by including its
viscosity and dielectric constant also under the framework of
the lubrication approximation. Zhuang[12], in a similar lin-
ear stability analysis, included the effect of static charge

imposed at the surface of the film in the expression for the
normal stress balance; his results reduce to Schäffer’s when
the static charge is negligible. By including the effect of free
charge in the polymer film, Pease and Russel[13] developed
the leaky dielectric model, which allows for redistribution of
charges at the interfaces. Results of the linear stability analy-
sis showed that the leaky dielectric yields growth exponents
and characteristic wave numbers larger than that for the per-
fect dielectric. Pease and Russel[14] also contrasted the re-
sults of the linear stability analysis with and without the
lubrication approximation, thus showing that this approxima-
tion fails where surface tension is small and electric fields are
large. Relaxation of the approximation predicts more tightly
packed pillars with greater aspect ratios. Comparison of the
theory developed for pattern-free masks shows reasonable
agreement with data for pillar and hole arrays from the lit-
erature[15].

While the fundamentals of this patterning process under
pattern-free masks are reasonably well understood, recent cy-
lindrically symmetric structures challenge the existing
theory. The literature contains several examples of these
structures. Chou[16] detailed two examples of concentric
rings with four to five rings each surrounding a central pillar.
The rings were evenly spaced and the annular widths of the
rings appeared to be constant. Schäfferet al. [8] have shown
a rosette in which 12 pillars circumscribe a central pillar.
They implicated a locally accentuated electric field as the
cause of the rosette’s formation. Subsequent work in their
group[17] has indicated that competition between electrohy-
drodynamic flow and dewetting may play a role in their ro-
sette features. Zhuang observed rings of pillars surrounding
spacers and dust particles[12] and also spirals and gratings
in cases with pattern-free masks and low-energy substrates.
These observations present interesting challenges to existing
theories.

In this paper we examine the experiments and experimen-
tal conditions that give rise to some of the ringlike features.
These results are compared to an electrohydrodynamic
model of the process capable of describing these cylindrical
structures. The perturbation analysis contained herein has
relevance to other cylindrically symmetric systems for which
Bessel functions also capture the radial variation.

II. EXPERIMENT

The experimental procedure is summarized schematically
in Fig. 1 and is similar to that used in previous experiments
[6]. The poly(methyl methacrylate) (PMMA) with a molecu-
lar weight ofMw=2 kg/mol (Polymer Source) used in these
experiments has a polydispersity index of 1.07. The polymer
was combined with an aliphatic quaternary amine(5% of
PMMA weight), octadecyl poly(15) oxyethylene methyl am-
monium chloride(Tomah Products, Product No. Q-18-15),
and dissolved in chlorobenzene(1–2 % solution by weight
of polymer). The quaternary ammonium chloride was se-
lected for its solubility in PMMA. The solution was spin

FIG. 1. (Color online) Schematic of ring formation by electro-
hydrodynamic patterning.(a) A mask patterned with localized pro-
trusions is held above a thin polymer film. Spacers on the mask
ensure that the mask protrusion does not initially contact the poly-
mer surface.(b) The system is placed in a press and heated above
the glass transition temperature of the polymer. A cylindrically sym-
metric instability sets in driven by electric fields and opposed by
surface tension.(c) A central pillar forms beneath the protrusion
after which(d) concentric rings are observed to form sequentially
around the pillar.
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coated to a thickness of 90 nm on a polished silicon wafer.1

The glass transition temperature of our polymer system was
measured by differential scanning calorimetry to be 75 °C.

Two different mask materials were used in our experi-
ment: fused quartz and silicon with a 130 nm layer of ther-
mally grown oxide. In both cases the mask was patterned
with protrusions ranging in height from 10 to 40 nm using
photolithography followed by reactive ion etching(RIE) in a
CHF3 plasma. Each protrusion was cylindrical with a diam-
eter of 3mm. The protrusions, which do not initially contact
the polymer surface, act as a nucleation points for ring de-
velopment. Nonuniformities in the polymer film or mask sur-
face can also nucleate rings indicating that the protrusions
are not necessary but may be helpful in locating the centers
of sets of rings. The gap between the mask and polymer
surfaces is controlled by an array of spacers fabricated on the
mask surface in the form of 0.5 mm wide aluminum lines
separated by 5 mm. The aluminum was deposited by elec-
tron beam evaporation through a shadow mask to create
spacers with heights ranging from 140 to 190 nm. It should
be noted that some of the heights of rings reported in the
plots are larger than the spacers on any of the masks used in
our experiment. It may be that the spacers were not forced to
the bottom of the polymer film, were not locally in contact
with the polymer surface perhaps due to dust particles, or the
rings may have been stretched during removal of the mask.
Finally, the masks are coated with a low surface energy sur-
factant, a fluorinated alkyltrichlorosilane, to facilitate the
separation of the mask from the polymer after the rings have
formed.

The mask is held against the polymer surface by a
parallel-plate press with an applied pressure of 300 psi
s21 MPad. Such pressures minimize variation in the gap be-
tween the mask and polymer surfaces. The entire system is
heated above the glass transition temperature of the film to
initiate the assembly process. After a specified time the sys-
tem is cooled below the glass transition temperature to affix
the patterns, and the mask is removed. There is no externally
applied field in our experiments. The polymer surface is then
characterized using atomic force and optical microscopy.

Figure 2 shows an atomic force microscopy(AFM) image
of completed concentric rings in which the central pillar is
clearly visible. The annular width of the rings is 1mm and
the ring-to-ring spacing is 3mm. The rings are 170 nm high
(as measured from the substrate to the top of the ring) and
took 60 min to form at 95 °C. Up to 10 fully formed rings
have been seen around a single central pillar. More rings
form as the dwell time increases.

Figure 3 shows an array of single rings formed under a
mask with 40 nm high protrusions spaced 40mm apart. The
rings took 30 min to form at 90 °C. Each set of rings centers
on a protrusion patterned in relief on the mask, but does not

show the central pillar that would be expected beneath the
mask protrusion. The reason is simple: the polymer tends to
climb the sidewalls of the protrusion and is torn away when
the mask is removed. This problem is not observed with the
smaller 10 nm protrusions. With protrusions of this height,
however, nucleation in unwanted areas is more likely to oc-
cur, often at localized nonuniformities in the mask or poly-
mer film. Experiments were also performed to observe di-
rectly the kinetics of ring formation. The experimental setup
resembles that discussed previously but necessitates the use
of a quartz mask. The formation process was recorded
through the top of the mask with optical microscopy. Further
details of the setup can be found elsewhere[18]. These ob-
servations and comparison to our theoretical model will be
presented later in this article.

It is important to note the differences between the experi-
mental conditions that form ring structures and those that

1The silicon wafers of p-type (100) with boron doping
s10–20V ·cmd were first cleaned for 15 min in a bath of DI water,
hydrogen peroxide, and ammonium hydroxide(5:1:1) at 80°C fol-
lowed by a DI water rinse for 15 min. The wafers had a layer of
native oxides,20–30 Åd, though, in some cases an 80 nm layer of
thermal oxide was grown.

FIG. 2. (Color online) Atomic force microscopy image of typi-
cal ring pattern formed from a 90 nm PMMA film containing 5%
quaternary ammonium chloride. The rings are 170 nm tall and have
a linewidth of 1mm with a radial spacing of 3mm. The mask and
substrate are made of silicon and the former has 130 nm of ther-
mally grown oxide. The sidewalls are quite steep and the tops of the
rings are flat.

FIG. 3. (Color online) Optical micrographs comparing mask and
polymer film after LISA process. The silicon mask and substrate
appear dark.(a) Optical image of silicon oxide protrusions 40 nm
high and 3mm in diameter on silicon mask.(b) Self-assembled ring
patterns formed from a 90 nm film at 90 °C with 160 nm spacer
heights and 130 nm of oxide on the mask. No central pillar can be
observed because the polymer film had climbed the sidewalls of the
protrusion, and was peeled off during separation.

CYLINDRICALLY SYMMETRIC ELECTROHYDRODYNAMIC… PHYSICAL REVIEW E 70, 041601(2004)

041601-3



previously created discrete pillars[6]. First, many of the
masks were patterned with cylindrical protrusions as in Fig.
3. Second, the quaternary ammonium chloride, a fully
soluble species, has been added to the polymer film. Al-
though cylindrically symmetric structures have been ob-
served without this addition, segmentation of the rings is less
common with it. This may be a consequence of some sec-
ondary instability, which will be addressed later. In addition
to differences in film composition, we note that our experi-
ments typically employ smaller mask–substrate separations
and lower temperatures than previous work on pillars. At
higher temperaturess,120 °Cd, discrete pillars are once
again observed even with the quaternary ammonium chloride
(Fig. 12) and cylindrical protrusions on the mask. The model
presented below accommodates the most important aspect of
these features, namely the cylindrical symmetry.

III. MODELING

Modeling the electrically driven formation of the rings
requires a linear stability analysis with a particular form of
the perturbation to account for symmetry. The electrohydro-
dynamic model, which we adopt from Saville[19], is ca-
pable of describing fluids ranging from perfect dielectrics,
where free charge is absent, to perfect conductors, where the
fields in conducting media are suppressed, with so-called
“leaky dielectrics” spanning the range in between. For the
purposes of this paper we focus on the perfect dielectrics
noting that wave numbers and growth exponents for other
cases have been developed previously[14] in Cartesian co-
ordinates. We allow electric fields to arise between the mask
and substrate either by applying a voltage,V, or through an
asymmetry among the contact potentials,xi, at the interfaces.
Variables are shown in Fig. 4. Our analysis accounts for the
reduction of the field in the gap due to oxide layers present
on the mask and substrate, which are otherwise assumed to
be conductors. The resulting electrical potentials,c, give rise

to an electrical surface force at the free interface. Body
forces are negligible because there is no gradient in the di-
electric constant,«, and bulk charge is assumed absent. Sur-
face tension,g, counters the electrical surface force as de-
scribed in the normal stress balance, Eq.(9). Balancing the
two sets the characteristic lateral spacing,L, as described
later. The fluid—our film above the glass transition
temperature—responds to the resulting lateral pressure gra-
dient, =p, with velocity, u=urer +uu eu+uzez, which leads to
deformation of the interface atz=h through lateral viscous
flow that couples to vertical flow through continuity.

Perturbations in the film height locally accentuate the
electric fields, which affect the pressure and hence feed back
into the film height through the fluid mechanics. If the elec-
tric fields are sufficient to overcome surface tension the free
interface becomes unstable. The relevant equations in cylin-
drical coordinates in SI units, with==ez] /]z+er] /]r
+seu / rd] /]u andez as the unit vector inz, are summarized as
follows:

=2cs = 0, =2c = 0, =2cg = 0, =2cm = 0, s1d

cs = V + x0, at z= − Hs, s2d

c − cs = x1, 0 = i««o=ci ·n, at z= 0, s3d

cg − c = x2, 0 = i««o=ci ·n, at z= h, s4d

cm − cg = x3, 0 = i««o=ci ·n, at z= H, s5d

cm = − x4, at z= Hm, s6d

− =p + m=2u = 0, s7d

= ·u = 0, s8d

1

2
i««ofs=c ·nd2 − s=c · trd2 − s=c · tud2gi

− f− p + mn · s=u + =utd ·ng + gk = 0, atz= h,

s9d

mti · s=u + =utd ·n = 0, atz= h, s10d

uz = 0, ur = 0, and uu = 0, atz= 0, s11d

] h

] t
= uz − urhr −

1

r
uuhu, at z= h. s12d

The first six equations describe the electrostatic potentials
(cs, c, cg, and cm) in the substrate(z=−Hs to 0), film (z
=0 to h), gap (z=h to H), and mask(z=H to Hm), respec-
tively. The latter six equations describing the fluid mechanics
couple with the electrostatics through the normal stress bal-
ance, Eq.(9). We assume the mask to be grounded, and the
jump operator, i i, indicates subtraction of the operand
immediately below the interface from that above. The super-
script t stands for the transpose.

FIG. 4. (Color online) Schematic of the model variables where
the height, surface tension, viscosity, and dielectric constant of the
polymer film areh, g, m, and «, respectively, while the dielectric
constant of the gap fluid is«g and the mask–substrate separation is
H. Where oxide is present on the mask,«m and Hm−H are the
dielectric constant and thickness of the oxide, while for the sub-
strate they are«s andHs.
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Equations(1) through(12) are completed with the mean curvature

k =
S1 +

1

r2hu
2Dhrr +

2

r2hrhuS1

r
hu − hruD + s1 + hr

2dS1

r
hr +

1

r2huuD
S1 + hr

2 +
1

r2hu
2D3/2 , s13d

and the normal and tangential unit vectors

n =

ez − hr er −
1

r
hueu

S1 + hr
2 +

1

r2hu
2D1/2, s14d

tr =
er + hrez

s1 + hr
2d1/2, s15d

tu =

s1 + hr
2deu −

1

r
hrhuer +

1

r
huez

s1 + hr
2d1/2S1 + hr

2 +
1

r2hu
2D1/2 , s16d

where the subscript toh indicates a partial derivative with
respect to this variable ander, eu, andez are the unit vectors
in ther, u, andz directions. These equations are solved under
the lubrication approximation below with details in the Ap-
pendix [20].

The equations were scaled by defining dimensionless
variables as given in Table I where the contact potential pa-
rameter isx=x0+x1+x2+x3+x4+V with overbars denoting
scaled quantities. The electrocapillary length falls out of the
normal stress balance asL=ÎgH3/«g«ox2, allowing us to
construct an important length scale ratioH /L=Î«g«ox2/gH.
The lubrication approximation usually applies when the
square of this ratio is much less than unity[14]. This ap-
proximation is valid for the experiments reported herein as
the fields are relatively small and the surface tension is large.
The characteristic process time isH /U=mgH3/ s«g«ox2d2. As
the viscosity,m, is strongly temperature dependent, this time
scale varies with the usual Williams-Landel-Ferry depen-

dence [21,22]. Additionally, the initial height ratio, h̄o
=ho/H, and the ratio of dielectric constants,« /«g, generally
are important. To first order approximation van der Waals
forces are negligible becauseAH2/h3«g«ox2 and AH2/ sH
−hd3«g«ox2 are much less than unity, whereA is Hamaker’s
constant.

Selection of the appropriate perturbation is the salient dif-
ference between the theory developed previously[10,14] and
that herein. The previous form of the perturbation was

h̄ = h̄o + h̃ expsi k̄ · x̄sd, s17d

where h̃, the perturbation amplitude, is much smaller than

any other length scale,k̄ is the wave vector, andx̄s is a
position vector. Equation(17) led to regularly spaced

maxima separated byl=2pL / k̄ and square packing, despite
its frequent application to hexagonal packing. Here, how-
ever, we choose a perturbation with the form

h̄ = h̄o + h̃einuJnsk̄r̄d s18d

in radial coordinatessr ,ud [23] whereJnsk̄r̄d is a Bessel func-
tion of the first kind of ordern with wave numberk. Similar
spatial dependencies have been seen in other systems

[24,25]. Bessel functions of the second kind,Ynsk̄r̄d, were
not chosen due to their unphysical divergence atr =0. Figure
5 shows the zero ordersn=0d perturbation that yields rings

as a function of the argument,k̄r̄. Clearly, the maxima, which
should correspond approximately to the location of the rings,
are not equally spaced for the first couple of rings, but the
spacing quickly approaches 2p for subsequent maxima(see

Table II). Notably, the spacing of approximately 2pL / k̄ is
remarkably similar to that for the pillars/holes[13,14].

We perturb accordingly, noting that the radial velocity has

the form ūr = ũre
inudJnsk̄r̄d /dr̄ and that sums, such ash̄= h̄o

+ h̃one
inuJvsk̄r̄d, are allowed in the linear analysis. Steps

leading to the determination of the eigenvalue, in the Appen-
dix [20] for the perfect dielectric, parallel previous deriva-
tions [13–15] with subtle, though significant, alterations. Af-
ter substituting the perturbations into the above equations
and expanding expressions near the polymer–gap fluid inter-
face sz=hd in a Taylor series expansion, we discard the
second- and higher-order terms. Solution for the interfacial
height yields a dispersion relation between the growth expo-
nent,m̄, which is scaled on the process time scale,H /U, and

the wave number,k̄, which is scaled on the electrocapillary
length, L. These dispersion relations are identical to those

TABLE I. Scaling factors.

Variables Scaled factor

z,h,H ,Hs,Hm,hmask H

r ,1 /k L

c ,cg,cs,cm,xi ,V x

p «g«ox /H2

uz U

ur ,uu UL /H

t H /U
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developed previously, suggesting that the eigenvalue is more
general than the eigenfunction.

If the lubrication approximation is invoked, as is appro-
priate for the data presented hereafter because the surface
tension is large and the potential small, then

m̄=
1

3
h̄o

3k̄21 «

«gS «

«g − 1D2

XD
3 − k̄22 , s19d

where the denominator XD= h̄o+s« /«gds1−h̄od+s« /«md
3sHm/H+1d+s« /«sdsHs/Hd with the first term in the large
parentheses arising from the electrical polarization forces
and the second from surface tension. The two terms compete

with the former dominating for smallk̄ but yielding to sur-

face tension whenk̄ is large. This competition determines a
maximum growth exponent and wave number, which are

k̄max= 11

2

«

«gS «

«g − 1D2

XD
3 2

1/2

, s20d

m̄max=
1

3
h̄o

3k̄max
4 =

h̄o
3«2

«gS «

«g − 1D4

12XD
6 . s21d

Both k̄max and m̄max are smaller with insulating layers(i.e.
oxide layers with thicknessesHs and Hm−H), indicating
smaller growth rates and larger spacings. Here we include
results only for the perfect dielectric, though both leaky and
perfect dielectrics are capable of producing ringlike struc-

tures. Oncek̄max is known, the diameter of each ring can be
determined.

The measured diameter is the mean of the distance be-
tween outer edges of a ring and that between its inner edges,

Dn = 2Î2Rm
n1 g

«ox2

Fho

«
+

H − ho

«g +
Hm − H

«m +
Hs

«sG3

S 1

«g −
1

«
D2 2

1/2

,

s22d

for each ring,n.0, whereRm
n is thenth scaled maximum of

the Bessel function as shown in Fig. 5. As the surface ten-
sion, g, decreases or the electrical potential, symbolized by
x, increases the measured diameter should decrease so long
as the lubrication approximation holds[14]. For the first ring
or two a correction is developed in the appendicial documen-
tation [20] as more material accumulates from the outer part
of the ring than the inner part and the spacing between scaled
maxima no longer approximates 2p.

The annular widths may also be determined through a
straightforward mass balance based on the Bessel function.
We assume that in addition to the maxima of the Bessel
function determining the location of the ring, that the side-
walls are exactly flat and not curved due to contact angles
with the mask and substrate, and that the fluid is incompress-
ible. Curvature of the sidewalls has been observed[12] and
may increase, marginally, the perceived annular width since
larger diameters at either the top or the bottom of the ring
may be measured. The resulting mass balance predicts that
the width of ringn is

Wn = 2Î2p
ho

H1 g

«ox2

Fho

«
+

H − ho

«g +
Hm − H

«m +
Hs

«sG3

S 1

«g −
1

«
D2 2

1/2

.

s23d

Equation(23) is not a function ofRm
n so it should be inde-

pendent of the ring number; a correction for the first couple
of rings is provided in the appendicial material[20]. This
expression points to the importance of the ratio between the
initial film thickness and the mask–substrate separation, sug-
gesting that relatively thinner films will generally produce
smaller annular widths. Decreasing the surface tension or
increasing the driving potential also minimizes the annular
width. One ring is not expected to merge with another in the
same set regardless of the relative thickness of the film, in

TABLE II. Values of the arguments at thenth maxima,Rm
n , and

minima,Ro
n, of the zeroth order Bessel function of the first kind.

n Rm
n Ro

n

0 0 3.83

1 7.02 10.17

2 13.32 16.47

3 19.62 22.76

4 25.90 29.05

5 32.19 35.33

6 38.47 41.62

7 44.76 47.90

8 51.04 54.19

9 57.33 60.47

10 63.61 66.75

FIG. 5. (Color online) The zeroth order Bessel function as a
function of the argument with maximaRm

n and minimaRo
n. The inset

shows the three-dimensional rendition of the perturbation.
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contrast with the pillars, though there may be some concern
when the contact angles vary from 90 °.

As only one lateral length scale is relevant for the central
pillar we give its diameter as

Do =
2LRo

o

k̄max

Î h̄o

1 − h̄mask

for Do ø Dmask, s24d

Do =
2LRo

o

k̄max

Îh̄o + h̄maskSDmaskk̄max

2LRo
o D2

for Do . Dmask, s25d

where hmask and Dmask are the height and diameter of the
cylindrical protrusion on the mask as seen in Fig. 6. Of the
two equations Eq.(24) applies when the rising column
merely contacts with the lower surface of the protrusion. The
latter, Eq.(25), applies when the final diameter of the pillar
exceeds that of the protrusion from the mask. In this latter
case the polymer climbs the sidewalls of the protrusions
from the mask and may result in a lack of central pillars as in
Fig. 3(b).

The results of the theory enable prediction of the cylindri-
cally symmetric structures observed experimentally. What
follows is a comparison of the theoretical results with those
measured experimentally.

IV. RESULTS AND DISCUSSION

The discussion to follow critically examines the agree-
ment between the experiment and theory. Ring diameters and
annular widths follow predicted trends as a function of the
ring number and mask–substrate separation. The sequential
ring development is explained and the growth rates shown to

accord with theory. We conclude with a discussion on the
presence of a secondary instability and emphasize the gener-
ality of the cylindrical perturbations to describe a variety of
electrohydrodynamically patterned structures.

Close examination of our expressions for ring diameter
and annular width, Eqs.(22) and (23), show that the ring
geometry depends on several parameters, many of which
were set in the course of the experiment. One parameter, the
contact potential parameter,x, must of necessity be esti-
mated, as its value was not measured directly. This parameter
represents the sum of the contact potentials at each surface
and was estimated by performing a least squares fit between
the measured diameters and Eq.(22) for each set of rings.
We also note that our calculations assume a mask–substrate
separation,H, equal to the average spacer height, 160 nm,
though in reality the value ofH is governed by the extent to
which the spacers are forced to the bottom of the polymer
film. The spacers may not have fully penetrated the polymer
film during the course of the experiment(they cannot begin
to penetrate untilT.Tg).

The diameters measured from AFM scans were compared
to those from the theory(see Fig. 6). As can be seen in Fig.
7 the agreement between the measurements and predictions
is quite good as a function of the ring number,n, confirming
the validity of the perturbation and the spacings that it im-
plies. The approximate linearity in both the data and the
corresponding theory is particularly remarkable, but not
completely unexpected as spacings between Bessel function
maxima quickly settle to 2p. The theory does not take the
geometry of the mask protrusion or the curvature of the side-
walls into account indicating the perturbation captures most
of the relevant physics. The contact potential parameters,x
(which are in fact a sum of the contact potentials at the five
interfaces), range from 7.8 to 10.3 V, a range that is consis-
tent with experimental uncertainty in determiningH and
other material parameters for the model.

Noting that the slopes between data points appear to be
approximately constant for the diameters as a function of the
ring number in Fig. 7, the ring-to-ring spacing should be
approximately constant for each concentric cluster. We ac-
cordingly plot the average slope of the experimental data
against the ring height as seen in Fig. 8. We had initially
assumed the ring height to be an accurate measure of the
mask–substrate separation,H, and as such expected the di-
ameter to be a strongly increasing function of the same.
However, the ring-to-ring spacing does not vary systemati-
cally with the measured height. Indeed, with the mask–
substrate separation and the contact potential parameter as
noted previously, the theory predicts a constant ring-to-ring
spacing that agrees with the data. We suspect that the final
ring height is determined by stretching of the rings during
mask removal. The independence of the ring spacing from
the measured ring height and, hence, our choice of a single
value forH is reasonable, since the height is determined long
after the electrohydrodynamic patterns are already fixed in
the polymer film. This is not unexpected given that all of the
data in Fig. 7 is from the same sample.

The data for the annular width,Wn, also follow trends
expected from theory as a function of the ring number(Fig.
9). Based on the mass balance associated with Eq.(23), the

FIG. 6. (Color online) (a) The mass balance must account for
the presence of a protrusion with height and diameterhmask and
Dmask. Pillars larger than the protrusion, i.e.,Do.Dmask, (dashed)
are described by Eq.(25), whereas those that are smaller(dotted)
are described by Eq.(24). The polymer can climb the outer edge of
the mask protrusion if the diameter of the central pillar,Do, is
greater than the diameter of the mask protrusion.(b) A cut away
schematic showing the ring diameter,Dn, annular width,Wn, and
the diameter of the central pillar,Do.
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theory predicts annular widths to be approximately constant
for each set of concentric rings as seen in Fig. 9. The lack of
dependence on the ring number, particularly beyond the first
couple of rings, is seen in the data of Fig. 9. Some variation
around the circumference of each ring, typically about a
tenth of a micron as observed in Fig. 2, is perhaps due to
local thickness variations or other localized anomalies in the
field or material properties. The rings are narrower at the top
and thicker at the bottom by half a micron. Accordingly, the
ring widths are constant within this variation. Yet, the theory
predicts annular widths in excess of those measured, the rea-
son for which becomes clear from Fig. 10.

Since the annular widths are approximately constant as a
function of the ring number,n, we can plot the average an-

nular width as a function of the ring height(Fig. 10). The
noticeable decrease in the annular widths as the ring height
increases conflicts with the prediction indicated by the
dashed line. The dashed line results from the mass balance
described in conjunction with Eq.(23), assuming the spacing
to be set by the linear stability analysis andH to be equal to
the spacer height. The solid line also assumes the spacing to
be set by the linear stability analysis withH as the spacer
height, but that at some later time the mass is redistributed to
the height measured by the AFM. One might exploit this
stretching phenomenon to create thinner rings were the
mechanism better understood.

Also the ratio of the diameter of the central pillar to the
annular width of the first ring can be compared with theory.
As seen in Fig. 9, this ratio has a mean of 1.6±0.1 with no

FIG. 7. (Color) The measured diameter,Dn, as a function of ring number,n, for sets of rings formed without an applied field from a
90 nm film at 90 °C with 160 nm spacer heights, 130 nm of oxide on the silicon mask, and 80 nm on the silicon substrate. The measured
ring heights and estimated contact potential parameters are 202 nm and 7.8 V(royal blue3’s), 210 nm and 10.3 V(pink circles), 234 nm
and 8.1 V(orange diamonds), 257 nm and 8.3 V(green triangles), 344 nm and 8.6 V(brown circles), 414 and 9.6 V(navy blue triangles),
and 648 nm and 8.4 V(red squares). The data points and theoretical fits are color coordinated for each set of concentric rings;«=«m=«s

=4.0 was assumed.

FIG. 8. The average ring-to-ring spacingsn.2d as a function of
the ring height for the rings described in Fig. 7. The error bars
represent three standard deviations. The solid line represents the
theory based on the mask–substrate separation equaling the spacer
height of 160 nm. The calculations assume«=«m=«s=4.0 and a
contact potential parameter ofx=8.7 V for the perfect dielectric.

FIG. 9. (Color online) The annular width,Wn, for n.0 and the
diameter of the central pillar,Do, as a function of the ring number,
n, for rings described in Fig. 7. The calculation(solid line) assumes
the ratio of the film thickness to mask–substrate separation,ho/H, is
0.56 andx=8.7 V for the perfect dielectric.
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correlation to the pillar height. Unfortunately, the length of
the protrusion from the mask is not known for the rings
shown in Fig. 9 as these rings were not nucleated intention-
ally like those in Fig. 3. By taking the ratio of Eq.(24) to Eq.
(23) with n=1 we find that the smallest predicted value of
Do/WI is 1.63, which occurs whenhmask/H=0, so we con-
clude that the protrusion for these rings was of negligible
height—a reasonable result for unintended growth.

Figure 11 shows the early evolution for a set of rings
observed in real time for a 90 nm film at 90 °C. The image
on the left shows the pattern starting as a small pillar below
the mask protrusion. After 7 min, the central pillar(dark
circle) was fully formed and surrounded by a white area
showing the exposed substrate and a faint halo. This halo
signals the growth of a ring and is actually a region that is
slightly higher than the surrounding polymer film. Note that
the ring does not form from pillars or segments that later
merge together. The ring is fully closed from the onset of
formation. Once part of the ring has touched the mask, the
contact area circles into an annulus within minutes. Subse-

quent rings form in much the same manner as the first.
The theory can also provide some insight into the relative

growth rates among a set of rings. Table III shows the time it
took for a series of rings of the same concentric set to form
from the moment the central pillar contacted the mask. The
ratio of the times of formation of thenth andsn-1dth rings
were taken and compared to the heights of the Bessel func-
tions atRm

n to Rm
n-1. The time for the formation of the central

pillar (which is not exactly known) was set to 4.9 minutes to
equate the measured and predicted ratios forn=1. The re-
maining ratios, corresponding ton=2 and 3, show good
agreement, suggesting that all the rings start forming simul-
taneously, though they may not be macroscopically observ-
able for several more minutes. This empirical observation
suggests that the growth is linear as opposed to exponential
as typically expected from linear stability analyses(see the
Appendix[20]). In other words, the initial growth is approxi-
mately linear and then at some critical height the nonlinear
growth takes over and contact is made shortly thereafter.

More extensive experimentation examined the tempera-
ture dependence. Figure 12 shows the variation in time be-

TABLE III. Times of formation of thenth ring as measured
from the completion of the central pillar with comparison of ratios
to amplitudes from the theory.

tc
n tc

n/ tc
n-1

n sminda datab JosRm
n-1d /JosRm

n d

0 0

1 11.3 3.33 3.33

2 16.6 1.33 1.37

3 21.3 1.22 1.21

aExperimental conditions are similar to those in Fig. 10, but at a
temperature of 105 °C. These times are from contact of the central
pillar with the mask.
bThe relative times include a 4.9 min offset, necessary for fitting
n=1, to account for the time required to form the central pillar.

FIG. 10. The average annular widthsn.2d as a function of the
ring height for the rings described in Fig. 9. The error bars represent
three standard deviations. The solid line represents the case where
the initial spacing is set by the spacer height, but the rings later
stretch to the measured ring height. The dashed line represents the
width assuming the mask–substrate separation equals the spacer
height with no adjustment. The calculations assumed«=«m=«s

=4.0 andx=8.7 V for the perfect dielectric.

FIG. 11. (Color online) Observed kinetic formation of a 180 nm
tall ring from 90 nm of film at 90 °C using a quartz mask and
silicon substrate with native oxide in the absence of an applied field.
The ring pattern starts from a central pillar(pink on left) whose
growth is triggered by the protrusion on the mask. This initial pillar
grows until it touches the mask. A bright halo(pink) and bare sub-
strate (white) become visible seven minutes after the pillar first
emerged. This halo is a ring of polymer several tens of nanometers
higher than the surrounding film. Within half an hour the polymer
first touches the mask and three minutes later a complete ring has
formed. Subsequent rings form in the same manner as the first. The
image color and contrast have been enhanced for clarity.

FIG. 12. (Color online) Dependence of the growth rate on tem-
perature: the rate was quantified by measuring the time interval
between the completion of the second and third rings for sets of
rings formed from 90 nm of film at 90 °C using a quartz mask and
silicon substrate with native oxide without an applied field. The
solid line represents a fit of the WLF equation withc1=20.38,c2

=40 °C andTg=75 °C. The insets show the observed change in
pattern morphology at higher temperatures due to a secondary
instability.
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tween the formation of the second and third rings against
temperature. The data shown in Fig. 12 are for sets of rings
separated by at least 100mm or more to avoid any effects of
interference. The initial gap between the mask and the poly-
mer surface was 90 nm; larger gaps seem to reduce the rate
of formation commensurate with our expectations based on
the theory. This temperature dependence fits with our under-
standing of the characteristic time for the process,H /U
=mgH3/ s«g«ox2d2, which is directly proportional to the vis-
cosity,m. The slight curvature on a semilog plot is expected,

as the viscosity of a polymer below the entanglement weight
has an exponential dependence on temperature as described
by Williams, Landel, and Ferry(WLF) [21,22],

m = mTGExpf− c1sT − Tgd/sT − T`dg, s26d

wheremTG is the viscosity at the glass transition temperature,
T`=Tg-c2 is the so called Vogel temperature, and constants
c1 andc2 depend on polymer properties.

Complete rings form when the temperature is between the
glass transition temperature and about 120 °C. Yet, for tem-

FIG. 13. (Color online) Comparison of perturbations based on
sums of Bessel functions to images from the literature and experi-

ment: hexagonal packing(a) from [6] and (b) the perturbationh̄

= h̄o+ h̃o j=0. . .̀ ei6juJ6jsk̄r̄d; square packing(c) from experiments
with 90 nm film at 115 °C with 160 nm spacer heights, 130 nm of
oxide on the silicon mask, and native oxide on the silicon substrate

without an applied field and (d) the perturbation h̄= h̄o

+ h̃o j=0. . .̀ ei4juJ4jsk̄r̄d; ridges or gratings(e) from [12] and (f) the

perturbation h̄= h̄o+ h̃o j=0. . .̀ ei2juJ2jsk̄r̄d; a ten pillar rosette(g)

from [12] and(h) the perturbationh̄= h̄o+ h̃fJ0s 3
5k̄r̄d+ei10uJ10sk̄r̄dg;

a twelve pillar rosette(i) from [8] and (j) the perturbationh̄= h̄o

+ h̃fJ0s 1
2k̄r̄d+ei12uJ12sk̄r̄dg. The bars in(e) and(i) are 10 and 5mm,

respectively, while the widths of(c) and(g) are 40mm and 20mm.
Panels(a), (e), (g), and(i) (www.nature.com) used with permission.
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peratures of 120 °C or more, closed rings did not result as
seen in the inset of Fig. 12. Instead we observed ring seg-
ments near the center and pillar arrays farther out. While our
intuition initially centered on the role of higher order(i.e.,
n.0) perturbations as the source of the ring segmentation,
we now believe secondary instabilities to be responsible.
Breaks in the rings, if only a few, are not symmetric and do
not align radially, as would be expected for higher order
Bessel functions. Furthermore, visual observations affirm
that the divisions form after some of the film has already
made contact with the mask. In consequence, we believe a
later instability is responsible for breaking up the rings into
discrete pillars and rings segments. Our current understand-
ing of this secondary instability centers on a competition
between surface tension and viscosity, though a thorough
explanation is outside the scope of this article.

The generality of this approach, which uses Bessel func-
tions as the basis of its perturbation, is illustrated in Fig. 13.
As mentioned previously sums of Bessel functions are al-
lowed under linear stability analyses, generating a family of
possible solutions. Here we compare some members of this
family to experimental images. In the left hand column are a
series of images from the literature or obtained as part of
these experiments. Structures range from square and hexago-
nal packings[6] to gratings and rosettes[8]. On the right
hand side is a rendering of sums of the Bessel functions as
perturbations that satisfy the linearized forms of our general
equations. By an appropriate linear combination, each of the
structures on the left is reproducible with remarkable fidelity.
One can easily see that if the topology were set early in the
process, these perturbations on the right would result in the
structures on the left. Each of the perturbations utilizes sums
with a single wave number except the rosettes, which require
two distinct wave numbers. The pillar-to-pillar spacings of
the rosettes have the same geometric ratios as those reported
[8]. While direct numerical comparison for each of these
structures is wanting due to the lack of quantitative experi-
mental data, the fact that these perturbations may be con-
structed lends credibility to the idea that electrohydrody-
namic modeling and our linear stability analysis in
cylindrical coordinates may be quite general.

The hexagonal distribution of Figs. 13(a) and 13(b) merits
special emphasis. Previous linear stability analyses typically
assume square packing due to the nature of the exponential

perturbation[see Eq.(17)]. Despite this fact, we and others
have made comparison to experiments where hexagonal
packing was clearly observed. Pease and Russel recently rec-
ognized that a modified Christopherson distribution captured
the hexagonal packing directly[15]. Alternatively, hexagonal
packing may be obtained by perturbing the film with a sum
of every sixth Bessel function as

h̄ = h̄o + h̃ o
j=0. . .̀

ei6juJ6jsk̄r̄d.

This construction as shown in Fig. 13(b) provides an addi-
tional route—one perhaps most relevant when local fields
nucleate a central pillar followed by subsequent growth.

How the system chooses the appropriate eigenfunction is
still unclear. We suspect that relief on the mask and substrate,
however small, could make the selection by locally increas-
ing the electric fields. Further modeling would be required to
probe the conditions leading to the selection of the appropri-
ate eigenfunctions as it is well known that nonlinear stability
analyses are required to distinguishing among square, hex-
agonal and ridge packings, all of which are allowed in the
linear version with the same wave number[26,27].

V. SUMMARY

In summary, we have presented sets of concentric rings
obtained experimentally and developed an electrohydrody-
namic description of ring and ringlike structures based on the
perfect dielectric model in cylindrical coordinates. Theory
developed to account for the growth of rings and cylindrical
structures shows close agreement with the experimental data,
predicting radial spacings, linewidths and relative growth
rates. The Bessel function approach described herein is suf-
ficiently general to describe more complicated structures
found in the literature.
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